Please use this identifier to cite or link to this item: http://dspace.msu.edu.ua:8080/jspui/handle/123456789/8997
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPahirya, M. M.-
dc.contributor.authorПагіря, Михайло Михайлович-
dc.date.accessioned2022-06-20T18:31:04Z-
dc.date.available2022-06-20T18:31:04Z-
dc.date.issued2019-
dc.identifier.urihttp://dspace.msu.edu.ua:8080/jspui/handle/123456789/8997-
dc.descriptionPahirya M. M. Representation of a one class function of two variables by bicontinued fractions / M. M. Pahirya // International Online Workshop on Approximation Theory. - Math. 27(2), 2019. - Р. 13–27uk_UA
dc.description.abstractLet function u(z, w) = f(z)h(w) be defined on the comp. We study the problem of representation of functions of this class by the product of two continued fractions, which is called a bicontinued fraction. Some properties of Thiele reciprocal derivatives, Thiele continued fractions and regular C–fractions are proved. The possibility of representation of functions of this class by bicontinued fractions is shown. Examples are considered, domains of convergence and uniform convergence of obtained bicontinued fractions to the function are indicated.uk_UA
dc.language.isootheruk_UA
dc.subjectcontinued fractionsuk_UA
dc.subjectbicontinued fractionsuk_UA
dc.subjectfunctions of two complex variablesuk_UA
dc.subjectrepresentation of functionsuk_UA
dc.subjectланцюговi дробиuk_UA
dc.subjectбiланцюговi дробиuk_UA
dc.subjectфункцiї двох комплексних змiннихuk_UA
dc.subjectзоб раження функцiйuk_UA
dc.titleRepresentation of a one class function of two variables by bicontinued fractionsuk_UA
dc.typeArticleuk_UA
Appears in Collections:Статті

Files in This Item:
File Description SizeFormat 
Representation_ of_ a _one _class _function_ of _two _variables _by_ bicontinued_ fractions.pdfRepresentation of a one class function of two variables by bicontinued fractions1.21 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.